Monocular depth estimation has been actively studied in fields such as robot vision, autonomous driving, and 3D scene understanding. Given a sequence of color images, unsupervised learning methods based on the framework of Structure-From-Motion (SfM) simultaneously predict depth and camera relative pose. However, dynamically moving objects in the scene violate the static world assumption, resulting in inaccurate depths of dynamic objects. In this work, we propose a new method to address such dynamic object movements through monocular 3D object detection. Specifically, we first detect 3D objects in the images and build the per-pixel correspondence of the dynamic pixels with the detected object pose while leaving the static pixels corresponding to the rigid background to be modeled with camera motion. In this way, the depth of every pixel can be learned via a meaningful geometry model. Besides, objects are detected as cuboids with absolute scale, which is used to eliminate the scale ambiguity problem inherent in monocular vision. Experiments on the KITTI depth dataset show that our method achieves State-of-The-Art performance for depth estimation. Furthermore, joint training of depth, camera motion and object pose also improves monocular 3D object detection performance. To the best of our knowledge, this is the first work that allows a monocular 3D object detection network to be fine-tuned in a self-supervised manner.
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
注释的医学图像昂贵,有时甚至无法在一定程度上获得地标检测精度。半监督学习通过利用未标记的数据来了解解剖标志性的人口结构来减轻对大规模注释数据的依赖。全局形状约束是解剖标识的固有属性,为更加一致的伪标签提供了有价值的指导,这些指南在先前的半监督方法中被忽略。在本文中,我们通过完全考虑全局形状约束,提出了一种用于半监控地标检测的模型 - 不可知的形状调节的自我训练框架。具体而言,为了确保伪标签是可靠且保持一致的,基于PCA的形状模型调整伪标签并消除异常。一种新的区域注意力损失,使网络自动关注伪标签周围的结构一致区域。广泛的实验表明,我们的方法优于其他半监督方法,并在三个医学图像数据集中实现了显着的改进。此外,我们的框架是灵活的,可用作集成到最具监控方法的即插即用模块,以进一步提高性能。
translated by 谷歌翻译
在本文中,我们建议使用注意机制和全球环境进行图像分类的一般框架,该框架可以与各种网络体系结构结合起来以提高其性能。为了调查全球环境的能力,我们比较了四个数学模型,并观察到分开的条件生成模型中编码的全球环境可以提供更多的指导,因为“知道什么是任务无关紧要的,也将知道什么是相关的”。基于此观察结果,我们定义了一个新型的分离全球环境(CDGC),并设计了一个深层网络来获得它。通过参加CDGC,基线网络可以更准确地识别感兴趣的对象,从而改善性能。我们将框架应用于许多不同的网络体系结构,并与四个公开可用数据集的最新框架进行比较。广泛的结果证明了我们方法的有效性和优势。代码将在纸上接受公开。
translated by 谷歌翻译
Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in their building modules. In this work, we introduce two new modules to enhance the transformation modeling capability of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from the target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the performance of our approach. For the first time, we show that learning dense spatial transformation in deep CNNs is effective for sophisticated vision tasks such as object detection and semantic segmentation. The code is released at https://github.com/ msracver/Deformable-ConvNets.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
Adversarial robustness assessment for video recognition models has raised concerns owing to their wide applications on safety-critical tasks. Compared with images, videos have much high dimension, which brings huge computational costs when generating adversarial videos. This is especially serious for the query-based black-box attacks where gradient estimation for the threat models is usually utilized, and high dimensions will lead to a large number of queries. To mitigate this issue, we propose to simultaneously eliminate the temporal and spatial redundancy within the video to achieve an effective and efficient gradient estimation on the reduced searching space, and thus query number could decrease. To implement this idea, we design the novel Adversarial spatial-temporal Focus (AstFocus) attack on videos, which performs attacks on the simultaneously focused key frames and key regions from the inter-frames and intra-frames in the video. AstFocus attack is based on the cooperative Multi-Agent Reinforcement Learning (MARL) framework. One agent is responsible for selecting key frames, and another agent is responsible for selecting key regions. These two agents are jointly trained by the common rewards received from the black-box threat models to perform a cooperative prediction. By continuously querying, the reduced searching space composed of key frames and key regions is becoming precise, and the whole query number becomes less than that on the original video. Extensive experiments on four mainstream video recognition models and three widely used action recognition datasets demonstrate that the proposed AstFocus attack outperforms the SOTA methods, which is prevenient in fooling rate, query number, time, and perturbation magnitude at the same.
translated by 谷歌翻译